According to data from the Energy Information Administration (EIA), more than 20 gigawatts (GW) of battery capacity have been added to the US electric grid in the last four years. This rapid expansion is equivalent to the production of 20 nuclear reactors and is crucial for averting power disruptions, especially in states that rely significantly on intermittent renewable energy sources such as wind and solar.

  • intensely_human@lemm.ee
    link
    fedilink
    arrow-up
    2
    arrow-down
    1
    ·
    3 days ago

    No they’re equal if the battery is designed to provide 1 hr of coverage.

    A 1 GWh batter will last 1 hour if its discharge rate is 1 GW.

    It’s the timeframe of 1 hour that makes these two measures numerically equal.

    • Tobberone@lemm.ee
      link
      fedilink
      arrow-up
      1
      ·
      2 days ago

      Thats what was said, for some applications 1c is good, for others 0,5 or even 0,25 is better. It depends on your usecase. Frequency regulation is often 1c, while if you are primarily concerned about depth, you could choose another configuration. It is also partly dependent on chemistry.

      As an example: a 100kWh can be at either 1c discharge rate, or 0,5c. 50 kW(0,5c) is usually cheaper because there is less need for hardware (and I believe less risk of thermal runaway)